Quantcast

Posts tagged with simply connected

the sine of the reciprocal of [some angle between −1/π and 1/π]

at increasing resolution

s <- function(x) sin( 1/x )
    plot( s, xlim=c(-1/pi, 1/pi), col=rgb(0,0,0,.7), type = "l", ylab="output", xlab="input", main="compose [multiplicative inverse] with [vertical rect of a circle]" )

(Source: amzn.to)










Pictures of the 3-sphere, or should I say the 4-ball? It&#8217;s a 4-dimensional circle.
Even though these drawings of it look completely sweet, I have a hard time parsing them logically. They&#8217;re stereographic projections of the hypersphere. All they&#8217;re trying to show is the shell of {4-D points that sum to 1}. That&#8217;s lists of length 4, containing numbers, whose items add up to 100%. Some members of the shell are
∙ 10% — 30% — 30% — 30%∙ 60% — 20% — 15% — 5%∙ 0% — 80% — 0% — 20%∙ 13% — 47% — 17% — 23%∙ 47% — 17% — 23% — 13%∙ 17% — 23% — 13% — 47%∙ 0% — 100% — 0% — 0%∙ 5% — 5% — 5% — 85% 
The hypersphere is just made up of 4-lists like that.

The 3-sphere was the object of the Poincaré Conjecture (which is no longer a conjecture). Deformations of this shell &#8212; this set of lists &#8212; are the only simply-connected 3-manifolds. Any other 3-manifold which doesn&#8217;t look holey or disjoint must be just some version of the hypersphere.

Pictures of the 3-sphere, or should I say the 4-ball? It’s a 4-dimensional circle.

Even though these drawings of it look completely sweet, I have a hard time parsing them logically. They’re stereographic projections of the hypersphere. All they’re trying to show is the shell of {4-D points that sum to 1}. That’s lists of length 4, containing numbers, whose items add up to 100%. Some members of the shell are

∙ 10% — 30% — 30% — 30%
∙ 60% — 20% — 15% — 5%
∙ 0% — 80% — 0% — 20%
∙ 13% — 47% — 17% — 23%
∙ 47% — 17% — 23% — 13%
∙ 17% — 23% — 13% — 47%
∙ 0% — 100% — 0% — 0%
∙ 5% — 5% — 5% — 85% 

The hypersphere is just made up of 4-lists like that.

The 3-sphere was the object of the Poincaré Conjecture (which is no longer a conjecture). Deformations of this shell — this set of lists — are the only simply-connected 3-manifolds. Any other 3-manifold which doesn’t look holey or disjoint must be just some version of the hypersphere.