Quantcast

Posted on Monday, 2 May 2011

Blood types form a topological space (and a complete distributive lattice). There are three generators: A, B, and Rh+.

Above the “zero element” is the universal donor O− and the “unit element” is the universal receiver AB+.

A topological space contains a zero object, maybe other objects, and all unions & intersections  of anything in the space.  So taking the power set  of {A, B, +} yields the “power set topology” which I drew above. AB+ is the 1 object and “nullset” O− is the 0 object.

A lattice has joins  & meets  which function like  and  in a topological space. Like 1 or True in a Heyting algebra, blood type as a power-set topology has one “master” object AB+.

46 notes

  1. clazzjassicalrockhop reblogged this from isomorphismes
  2. nursefocker reblogged this from isomorphismes
  3. inegray reblogged this from stephelvetica
  4. stephelvetica reblogged this from oriettaroperto
  5. midgetmonkey reblogged this from isomorphismes
  6. ulaulaman reblogged this from smoot
  7. smoot reblogged this from isomorphismes
  8. the-littlest-tiger reblogged this from isomorphismes
  9. sleepingbygods reblogged this from isomorphismes
  10. sellyourkingdom reblogged this from isomorphismes
  11. boxfish0 reblogged this from isomorphismes
  12. dorsalansicht reblogged this from isomorphismes
  13. enagrom reblogged this from isomorphismes
  14. bparramosqueda reblogged this from isomorphismes
  15. isomorphismes posted this